Combine Adjustment: ontiSel Lago Zorget it!

Facts:

- SK = 33 million acres of grain harvested per year
 SK Production is about 1 billion plus bushels per year

Estimations:

- 2,500 acres / combine = 13,200 combines to adjust in SK!
- About 76,000 Bushels / combine
- Just 1 bu/acre less loss = 33 million bushels
- At an average of \$7 / bushel = \$231 million

Pam

Western Canada Harvest Challenges

- Short harvest window
- Weather
- Variety of crops and conditions
- Inexperienced combine
 operators
- Experienced operators (owners) busy managing the operation
- Shortage of farm labor
- Crop Variability

Pami

Common Misconceptions:

- Mph = capacity
- More power = More capacity
- Keeping the machine full (driving faster) = less loss
- The losses can't be that bad

Common Misconceptions:

- If I can't find much on the ground the losses are ok
- I can go the same speed with a wider header
- Same settings for one crop will be fine for the entire season
- Same settings for one crop will be fine for the entire day
- My loss monitor tells me my loss

How bad can loss be?

- Easily 1-2 Bu/acre
- Commonly 2-5 Bu/acre
- Worst case 5-15 Bu/acre! We've Seen it!

Sources of Loss

- Nature shatter (ripening, wind, rain, hail, wildlife, heat)
- Cutting windrowing or straight cutting
- Combine Leakage feeder, separator, grain tank, elevators, shoe seals
- Combine Processing
 - Feeding
 - Threshing
 - Separating
 - Cleaning

Pami

High Losses! What's Happening?

- More power! Since 1990 combine HP has more than doubled
- Significant material handling improvements
- Maximum throughput is greater than capacity of the processing and cleaning systems in some conditions.
- Modern spreaders and choppers hide the loss

High Losses! What's Happening?

- Assumption that the latest combine has X% more capacity than the previous model in all conditions.
- Assumption that if the combine can send it through the grain will end up in the tank
- Similar ground speeds with wider headers
- Yields have increased

Раг

How do you end up with high loss?

Maladjustment and or driving too fast

Pami

You are used to going 4 mph Yield increases from 50 to 60 bu/ac = 20% increase Harvest speed should now be 3.2 mph You switched from a 30 ft header to a 36 ft = 20% increase Harvest speed should now be 2.5 mph You are still going at 4 mph = 60% over target feedrate!

Previously if you were going at 4 mph and increased it by 60% you would have been going 6.4 mph!

It is not unreasonable to expect losses could increase by 5 Times!

What's the cost of loss?

- Canola at \$10/bu
- 160 acres

Pami

• 40 ft header

- @ 3 mph (14.5 ac/hr) loss = 1 bu/acre over 11.0 hrs
- @ 4 mph (19.4 ac/hr) loss = 3 bu/acre over 8.2 hrs
- Reduced harvest time by 2.8hr @ <u>\$300/hr</u> = +\$840
- @ 3 mph cost of loss = \$1,600 or \$145/hr
- @ 4mph cost of loss = \$4,800 or \$585/hr
- Loss Increased by <u>\$440/hr</u> by going 1 mph faster
- Cost \$2,360 to go 1 mph faster for 160 acres
- Plus the cost of dealing with the volunteer plants

What should be my expectations?

- 1 Bu/acre loss is achievable
- Sometimes 2 Bu/acre loss is as good as it gets
- At 1 Bu/acre loss typically at 55 to 85% engine power mid day with 400 to 500 HP combines

What is Combine Productivity?

Sustained average work rate

• Expressed as Bushel or tonnes per hour at a loss level

Incorrectly identified as productivity:

- Acres per hour
- Mph

PAMI

What is Combine Capacity?

Feedrate @ a specific loss

- Expressed as Tonnes per hour MOG @ 1.5%, 2% ...10% loss
- Incorrectly identified as capacity:
 - Acres per hour

Mpb

What Affects Combine Capacity?

MOG Feedrate

Pami

As feedrate increases loss increases

MOG to Grain Ratio

- Tests from1985 on conventional combine in wheat:
 - Reducing MOG to Grain ratio from 1.20 to 0.85 = 49% capacity increase
 - 6" higher cut height
 - Reducing MOG to Grain ratio from 1.20 to 0.64 = 85% capacity increase
 - 12" higher cut height

A closer look at loss

Pami

How do you keep losses low?

First you have to look and quantify the loss!

PAMI

Better yet, catch the loss in a pan!

Know the pan area Recommend chopper and spreaders disengaged

Tools Needed

Combine Seed Loss Guide A method for determining seed loss from your combine based on weight, volume, or kernels. С DISCHARGE U (no choppers or Т spreaders) 10 Concentration Factor 1. (CF) 13.2 Windrower or header Common Ratios of Width of Cut to Width of Discharge STEP 1 STEP 2 Find your (Concentration Factor) Collect a CF-in Width of Discharge from Rear of Combine (ft) CF Sample this table 5 (X) 3 4 from dis-6 charge of 12 16 20 24 4 known Width of Cut (ft) 20 30 15 25 5 area -30 6 18 24 36 28 Be Careful 21 42 35 Be Safe 24 32 40 48 8 27 36 45 54 9 30 40 50 60 10 Continue steps on next page canolacouncil PAMI

- STEP 3 Clean seed from catch
 - Sieve using a screen
 - Blow out chaff
 Hint can use leaf blower and 85 I

Hint can use leaf blower and 85 L tub

 $\label{eq:step4} \underbrace{ \text{STEP 4} }_{\text{tube}), \text{ see guide.}} \text{ Weigh, measure (volume), or count seeds (use scale, test tube), see guide.}$

- <u>STEP 5</u> Calculate loss on per ft² basis (divide results by ft² of collection pan)
- STEP 6 Select Table 2, 3, 4, or 5 to find loss on a per acre basis

Table 2		W	eighing N	lethod - /	All Crops			
Cut wid	th compared	to windrow	droped beh	ind combine	(Concentrat	tion Factor :	=CF)	Loss
CF	4	5	6	7	8	9	10	lb/ac
lected Behind In 1 square foot a ms/ft ²	0.4	0.5	0.6	0.7	0.8	0.9	1.0	10
	0.6	0.8	0.9	1.1	1.2	1.4	1.6	15
	1.0	1.3	1.6	1.8	2.1	2.3	2.6	25
	2.1	2.6	3.1	3.6	4.2	4.7	5.2	50
	3.1	3.9	4.7	5.5	6.2	7.0	7.8	75
	4.2	5.2	6.2	7.3	8.3	9.4	10.4	100
0 g 0	5.2	6.5	7.8	9.1	10.4	11.7	13.0	125
ss	6.2	7.8	9.4	10.9	12.5	14.1	15.6	150
9 8	7.3	9.1	10.9	12.8	14.6	16.4	18.2	175
	8.3	10.4	12.5	14.6	16.7	18.7	20.8	200

For bigger collection pans multiply the values in the grey zone by the number of ff* in the collection Calculations are based upon 0.010413 grams/R* over each fR* in an acre =1 b/ac

Cut wid	th compared	to windrow	droped beh	ind combine	(Concentrat	tion Factor =	=CF)	Loss
CF	4	5	6	7	8	9	10	bu/ac
.5	0.8	1.0	1.3	1.5	1.7	1.9	2.1	0.25
°2-	1.7	2.1	2.5	2.9	3.3	3.8	4.2	0.50
-	2.5	3.1	3.8	4.4	5.0	5.6	6.3	0.75
	3.3	4.2	5.0	5.8	6.7	7.5	8.3	1.00
	4.2	5.2	6.3	7.3	8.3	9.4	10.4	1.25
	5.0	6.3	7.5	8.8	10.0	11.3	12.5	1.50
0 8	5.8	7.3	8.8	10.2	11.7	13.1	14.6	1.75
	6.7	8.3	10.0	11.7	13.4	15.0	16.7	2.00
Bell	8.3	10.4	12.5	14.6	16.7	18.8	20.9	2.50
8 -	10.0	12.5	15.0	17.5	20.0	22.5	25.0	3.00
5	11.7	14.6	17.5	20.5	23.4	26.3	29.2	3.50
	13.4	16.7	20.0	23.4	26.7	30.1	33.4	4.00
5	15.0	18.8	22.5	26.3	30.1	33.8	37.6	4.50
<u> </u>	16.7	20.9	25.0	29.2	33.4	37.6	41.7	5.00

PRIME www.pami.ca Innovative Solutions for Agriculture and Beyond

Loss

bu/ac

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Loss

bu/ac

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.25

0.25

4 3 2 1 0

or lection

1 ½ bu 🔺 🖣

Barlev

Nhea

з

4. 1 bu

п

Online Calculator - Use your smartphone!

http://farmpro.ca/ref/CombineLoss

Crop Wheat 🗸	Crop Wheat 🗸	Operating cost (\$/hour) 200
Density (lbs/bu) 60.0	Density (lbs/bu) 60.0	Width of cut (ft) 29
Yield (bu/ac) 50	Seed size (mg) 40	
Catch area (ft ²) 3	Yield (bu/ac) 50	Crop price (\$/bu) 10.00
Cut width (ft) 29	Count area (ft ²) 1	Option A Option B
	Cut width (ft) 29	Speed (mph) 4 3
Discharge width (ft) 5	Discharge width (ft) 5	Loss (bu/ac) 2 0.8
Loss weight (g) 6	Kernel count 20	
Compute	Compute	Workrate (ac/hr)
Total loss (bu/ac)	Total loss (hu/as)	Total cost (\$/hr)
Relative loss (%)		Savings (\$/ac)
	Kelative loss (%)	
By Weight	By Seed Count	Cost Calculator

By Seed Count

Cost Calculator

Innovative Solutions for Agriculture and Beyond

Pam

Can combine settings reduce loss?

Can combine settings reduce loss?

Innovative Solutions for Agriculture and Beyond

Pami

Can combine settings reduce loss?

Innovative Solutions for Agriculture and Beyond

Pami

Got to get my crop harvested so what are my options?

- Slow down
- Live with it
- Train operators
- Automation
- Hire a specialist
- Fewer acres
- More combines

Technology that could help

- Operator feedback of what's happening inside the combine cameras and sensors
- Sensors under the rotor and sieves to indicate how far back the seed is getting
- Indication of amount of clean grain in returns
- Normalize settings and indications across combines
 - Cleaning settings in m/s rather than rpm
 - Rotor / Cylinder speed in m/s rather than rpm

Technology that could help

- Straw and chaff MOG feed rate monitor
- On board cost benefit analysis of various feed rates and corresponding loss levels
- Air velocity at different points of the cleaning system to better set fan and sieves
- More accurate loss monitors in actual Bu/acre

Key Indicators:

- High amount of grain in tailings may indicate improper cleaning system settings
- A very clean grain tank sample may indicate high losses

Key Indicators:

- Stick your hand in the grain tank sample damaged grain will sometimes stick to your hand
- Condition of the straw coming out of the combine
- Watch your yield monitor (in consistent fields)
- Kill stalls you can learn a lot!

Recommendations

- Don't make it a race!
- Don't use all of the available power all of the time
- Learn about your combine
- Invest time in checking losses and optimizing settings

Recommendations

- Do comparisons side by side in same conditions
- Correlate loss with your loss monitor
- Don't use the same settings for one crop all year
- Don't use the same settings all day
- Be safe!

PA

Combine Adjustment: on tiset it and Longet it!

estions