Evaluation Report

690

Brandt 852 Super-Charged Grain Auger

MANUFACTURER AND DISTRIBUTOR:

Brandt Industries Ltd.
705 Toronto Street
Regina, Saskatchewan
S4P 3A2
Tel: (306) 525-1314

Retail Price:

$\$ 3,225.00$; basic auger with no options (July 1991, f.o.b. Portage la Prairie, MB).

FIGURE 1. Brandt 852 Super-Charged: (1) Main Auger Tube, (2) Super-Charger Inlet, (3) PTO Drive, (4) Lift Winch, (5) Undercarriage.

SUMMARY

Rate of Work: At the 30° elevation angle, corresponding to a discharge height of $26.5 \mathrm{ft}(8.1 \mathrm{~m})$ maximum capacities were $3590,3580,3775,3040 \mathrm{bu} / \mathrm{hr}(103,68,99,66 \mathrm{t} / \mathrm{h})$ in wheat, oats, canola, and standard material respectively. Maximum capacities were usually obtained at flighting speeds between 440 and 600 rpm . Quality of Work: Quality of work was good. In dry wheat, damage was less than 0.2% for each pass through the auger.

Ease of Operation and Adjustment: The discharge height could be varied from 12.3 to 33.3 ft (3.8 to 10.1 m). Bin eave clearance varied from 8.1 to 17.3 ft (2.5 to 5.3 m) and reach varied from 15.3 to 24.0 (4.7 to 7.3 m) at elevation angles of 13° to 41°, respectively.

Ease of operation was good. The Brandt 852 was easy to manoeuvre and position due to the relatively light hitch weight of $57 \mathrm{lb}(26 \mathrm{~kg})$. Adjustments for discharge height were accomplished by rotating the cable winch handle.

Ease of hitching was very good. The removable tow hitch was easily installed for towing and easily removed for operation of the auger.

Ease of transporting was very good. It was stable at speeds up to $20 \mathrm{mph}(35 \mathrm{~km} / \mathrm{h})$ on paved highways. Ease of lubrication was very good. Only the power shaft had grease pressure nipples.

Power Requirements: Power requirements for the Brandt 852 auger ranged from 5.5 to 18.8 hp (4.1 to 14.1 kW) in dry grain.

Operator Safety: Operator safety was good if normal precautions for safety were observed. The auger complied with all currant standards for safety.

Operator's Manual: The operator's manual was very good. It was well written, organized and illustrated.

Mechanical History: One minor problem occurred during the testing period.

RECOMMENDATIONS

It is recommended that the manufacturer consider:

1. A modification to the slide roller assembly that pushes up the auger tube that would prevent the slide roller assembly from binding.
2. A modification that would prevent a top heavy imbalance when grain is concentrated in the top portion of the auger tube during clean out.
Station Manager: B. H. Allen
Project Manager: R. K. Harris

THE MANUFACTURER STATES THAT

With regard to the recommendation:

1. The slide roller was redesigned in May, 1991 to combine the roller with the double pull. This removes the twisting force experienced during the testing.
2. The auger axle frame was redesigned in May, 1992. The new balance point increases the hitch weight to approximately 80 lbs (depending on the drive option of the auger).

GENERAL DESCRIPTION

The Brandt 852 Super-Charged Grain Auger is an 8 in $(203 \mathrm{~mm})$ diameter $52 \mathrm{ft}(15.8 \mathrm{~m})$ long portable screw conveyor. The auger tube is mounted on a tubular steel undercarriage and is raised or lowered mechanically with a hand winch and cable. The inlet end of the auger is supplied with a removable hitch that is used for towing, while the undercarriage is supported by two wheels with rubber tires.

Detailed specifications are presented in APPENDIX I.

SCOPE OF TEST

The machine evaluated by PAMI was configured as described in the General Description, FIGURE 1 and the specifications section of
this report. The manufacturer may have built different configurations of this machine before or after PAMI tests. Therefore, when using this report, check that the machine under consideration is the same as the one reported here. If differences exist, assistance can be obtained from PAMI or the manufacturer to determine changes in performance

The Brandt 852 was operated for about 30 hours during the duration of the test. Prior to capacity and power tests, the auger was used for about 15 hours moving wheat, barley and canola. During the capacity and power tests, the auger was operated for an additional 15 hours.

The auger was evaluated for: capacity, specific capacity, power requirements, operator safety, and suitability of the operator's manual. Mechanical history was also recorded.

RESULTS AND DISCUSSION

RATE OF WORK

Capacity: FIGURE 2 shows the capacities of the Brandt 852 in various grains at 30° elevation angle. Maximum capacities at this angle were $3590,3580,3775,3040 \mathrm{bu} / \mathrm{h}(103,68,99,66 \mathrm{t} / \mathrm{h})$ in wheat, oats, canola, and standard material respectively. As flighting speeds are increased, the capacity of screw conveyors increases to a peak, then levels off or decreases. Maximum or peak capacities for the Brandt 852 occurred at flighting speeds between 440 and 600 rpm .

The effect of elevation angle on capacity is illustrated in TABLE 1. Peak capacities in wheat dropped 19.6% from $3760 \mathrm{bu} / \mathrm{h}$ ($108 \mathrm{t} / \mathrm{h}$) at 20° elevation to $3020 \mathrm{bu} / \mathrm{h}(87 \mathrm{t} / \mathrm{h})$ at maximum of 41° elevation.

FIGURE 2. Capacity, Specific Capacity and Power Requirements for various flighting speeds at 30°.

Specific Capacity: Specific capacity is the amount of grain moved per unit of power in a specific time. A high specific capacity indicates efficient use of power. In general, specific capacity decreases (less grain is moved per horsepower hour) with increasing flighting speeds and elevation angle. Specific capacity at 30 ranged
from 5.2 to 8.6 ton/hp-h (6.3 to $10.5 \mathrm{t} / \mathrm{kW}-\mathrm{h}$) in dry wheat, oats, canola and standard material.

TABLE 1. Peak capacity, Specific Capacity and Power Requirements Vs Elevation Angle (dry wheat)

Elevation Angle	Discharge Height		Peak Capacity		Specific Capacity		Power Input	
Degrees	ft	\mathbf{m}	bu/h	t/h	ton/hp-h	t/kW-h	hp	kW
20	18.0	5.5	3760	108	6.2	7.6	17.4	13
30	26.5	8.1	3580	102	5.5	6.7	18.8	14
41	33.3	10.2	3020	87	5.0	6.1	17.5	13

Critical Speeds: At certain critical flighting speeds auger vibration may become excessive. This phenomenon, known as resonance is common to all augers. It would appear that this critical speed is outside the operating speed range of the Brandt 852 as it did not appear within the speeds the auger was operated at during the evaluation.

QUALITY OF WORK

Grain Damage: Quality of work was very good. Damage in dry wheat (13% moisture content) was 0.2% for each pass through the auger. This is considered to be acceptable in comparison to other makes of augers. Grain damage would not be significantly reduced when moving crops of higher moisture content.

EASE OF OPERATION AND ADJUSTMENT

Discharge Height: Auger discharge height adjustment was good.

The discharge height (FIGURE 3) could be varied from 12.3 to $33.3 \mathrm{ft}(3.7$ to 10.1 m) with the mechanical cable winch mechanism. Corresponding elevation angles varied from 13° to 41°.
The auger discharge height was adjusted from the ground by rotating the cranks on the cable winch until the desired discharge height was obtained.

Auger Reach: The bin eave clearance and horizontal reach (FIGURE 3) of the Brandt 852 are shown in TABLE 2. Bin eave clearance, measured from the ground to the auger tube at the foremost part of the undercarriage, varied from 8.1 to 17.3 ft (2.4 to 5.3 m) at 13° and 41° respectively. The reach, measured from the foremost part of the undercarriage to the centre of the discharge, varied from 15.3 to $24.0 \mathrm{ft}\left(4.7\right.$ to 7.3 m) at 13° and 41° respectively.

FIGURE 3. Dimensions: (A) Horizontal Reach, (B) Bin Eave Clearance, (C) Discharge Height.

TABLE 2. Reach, Clearance and Discharge Height at Various Elevations

Angle	A Horizontal Reach		Bin Eave Clearance		B Discharge Height	
Degrees	$\mathbf{f t}$	\mathbf{m}	$\mathbf{f t}$	\mathbf{m}	$\mathbf{f t}$	\mathbf{m}
13	15.3	4.7	8.1	2.4	12.3	3.7
20	17.5	5.4	11.5	3.5	18.0	5.5
30	21.7	6.6	13.5	4.1	26.5	8.1
41	24.0	7.3	17.3	5.3	33.3	10.1

Operation: Ease of operation was good. The Brandt 852 was easily positioned at the unloading/loading site. The operator's
manual clearly states that the auger should be positioned while attached to a towing vehicle, however some positioning had to be done by hand. The auger was prepared for operation by raising the auger tube to the desired discharge height, and removing the hitch assembly from its attachment bracket. Fitting a suitable intake hopper and connecting the power shaft to the tractors PTO shaft completed set up.

Adjustments: Ease of adjusting the discharge height was fair. Turning the crank for the cable winch was tiring. The crank required 146 complete turns to raise the auger tube from minimum angle of elevation to maximum, while requiring a force of $51 \mathrm{lbs}(227 \mathrm{~N})$. When lowering the auger tube, a faulty roller assembly caused the auger tube support frame to bind (FIGURE 4). The support frame had to be winched with a come along toward the discharge end of the auger to free the roller assembly. It is recommended that the manufacturer consider a modification to the slide roller assembly that pushes up the auger tube that would prevent the slide roller assembly from binding.

FIGURE 4. Hitch Assembly.
Manoeuvrability: Manoeuvrability was very good. The Brandt 852 was easily moved into operating position when attached to a towing vehicle. The operator's manual clearly states that the auger should not be manoeuvred by hand, however, some final positioning was necessary by hand.

Transportability: Transporting the Brandt 852 was very good. The auger was stable at speeds up to $20 \mathrm{mph}(35 \mathrm{~km} / \mathrm{h})$ on paved highways and up to $15 \mathrm{mph}(25 \mathrm{~km} / \mathrm{h}$) on gravel roads. The test auger was equipped with used automobile tires.

The Brandt 852 was prepared for transporting by lowering the auger tube angle to its lowest position of 13° and attaching the hitch assembly in its bracket (FIGURE 4). The power shaft was secured in transport position with a chain that held the shaft more or less parallel to the auger tube. Clearance under power lines was ample when fully lowered. The transport height was $14.6 \mathrm{ft}(4.3 \mathrm{~m})$.

Lubrication and Maintenance: Lubrication and maintenance of the Brandt 852 was very good. Lubricating the auger consisted of ensuring an adequate supply of EP 90 gear oil in the gear box and greasing wheel bearings semi-annually. In addition, the universal joints in the power shaft required grease every 10 hours.

Maintenance consisted of ensuring proper chain tension and sprocket alignment.

If augers are used to move damp grain the power source should be sized accordingly. The power requirement for augers without side delivery will increase by approximately $5 \%, 33 \%$ and 50% when moving damp canola, corn and wheat respectively.

OPERATOR SAFETY

Operator safety was good if appropriate safety precautions were observed. When crop becomes concentrated in the discharge end of the auger during cleanout, an imbalance occurs resulting in the inlet end of the auger rising and the discharge falling. It is recommended that the manufacturer consider a design modification that would prevent the auger from becoming unbalanced when crop is concentrated at the discharge end.

The Brandt 852 complied with all current ASAE standards for safety for agricultural screw conveyors. The auger inlet was
protected and enclosed in a mesh grate that completely surrounded the exposed flighting. In addition rotating shafts and universal joints were adequately guarded.

OPERATOR'S MANUAL

The operator's manual was very good. It was well written, organized and illustrated. It contained useful information on safety, assembly, operation, specifications, maintenance, gear boxes and parts list.

MECHANICAL HISTORY

During the 30 hours of operation only one minor mechanical problem occurred. The auger was supplied with a faulty slide roller assembly (FIGURE 5). The faulty assembly would bind and would not allow the auger tube to be lowered from its maximum height position. The roller was replaced and the problem did not recur.

FIGURE 5. Slide Roller Assembly.

POWER REQUIREMENTS

Power requirements for the Brandt in dry wheat (FIGURE 2) ranged from 7.4 to 18.8 hp (5.5 to 14.1 kW). The Brandt 852 required a tractor with a PTO shaft capable of 540 rpm and at least 30 hp (22 kW).

APPENDIX I SPECIFICATIONS	
MAKE:	Brandt
MODEL:	852 Super Charger
SERIAL NUMBER:	22391 A
OVERALL DIMENSION:	
-- Transport Length	52.0 ft (158 m)
-- Field Width	$7.5 \mathrm{ft}(23 \mathrm{~m})$
-- Transport Width	$7.5 \mathrm{ft}(23 \mathrm{~m})$
-- Transport Height	$14.0 \mathrm{ft}(43 \mathrm{~m})$
DRIVE:	
-- 540 rpm Tractor Power Take Off	
-- 1:1 Direction Changing Gearbox	
-- Power Take Off to Flighting	
-- Speed Ratio	1, 12:1
LUBRICATION:	
-- Pressure Grease Fittings	on power shaft only
-- Packed Wheel Bearings	2 sets (pack semi annually)
-- Gearbox	EP 90 Gear Oil (as required)
-- Universal Joints	Every 10 Hours
AUGER TUBE:	
-- Length	$520 \mathrm{ft}(158 \mathrm{~m})$
Inlet	t Discharge
-- Inside Diameter 9 in (229	mm) $\quad 8$ in (203 mm)
-- Material Thickness 0.070 in (2	2 mm)
FLIGHTNG: Inlet	t Discharge
(Super-Ch	harger)
-- Diameter 8.5 in (215	$5 \mathrm{~mm}) \quad 6.8 \mathrm{in}(175 \mathrm{~mm})$
-- Pitch 5.0 in (127	$7 \mathrm{~mm}) \quad 5.0 \mathrm{in}(127 \mathrm{~mm})$
-- Exposed Length 16.7 in (42	(mm)
-- Thickness	
-Inner 0.060 in (1	1.5 mm) $\quad 0.060$ in (1.5 mm)
-Outer 0.190 in (5	$5 \mathrm{~mm}) \quad 0.190 \mathrm{in}(5 \mathrm{~mm})$
INNER SAFETY GUARD:	
-- Material Dimensions	0.157 in (4 mm)
-- Overall Size	20×14.5 in ($517 \times 369 \mathrm{~mm}$)
-- Grill Openings	2.7×2.7 in ($70 \times 70 \mathrm{~mm}$)
-- Maximum Open Area	$7.8 \mathrm{in}^{2}\left(5040 \mathrm{~mm}^{2}\right)$
-- Maximum Guarded Diameter	360°
LIFT MECHANISM:	
-- Type	Hand Winch
-- Make	Shelby Industries
-- Model	5352
-- Number of Turns to Max. Elevation	146
-- Maximum Handle Force	$51 \mathrm{lbs}(2268 \mathrm{~N})$
-- Cable (Wire Rope) Diameter	0.264 in (65 mm)
WEIGHT:	
-- Minimum Elevation	
-Right Wheel	$578 \mathrm{lb}(262 \mathrm{~kg})$
-Left Wheel	$586 \mathrm{lb}(266 \mathrm{~kg})$
-Hitch	$58 \mathrm{lb}(26 \mathrm{~kg})$
TOTAL	$1222 \mathrm{lb}(554 \mathrm{~kg}$)
-- Transport Hitch Weight	
TIRES:	
-- Size	P215-70R
-- Number	2
-- Type Used	Automobile

The standard test material is a high density granular polyethylene. The material is consistent and not subject to damage or changes in physical properties as are grains. FIGURE 6 gives the capacity, specific capacity, and power requirements for the Brandt 852 Super Charger in a standard test material. This data may be used for comparison of different grain augers.

FIGURE 6. Capacity, Specific Capacity, and Power Requirements with Standard Test Material at 30° of elevation angle.

	APPENDIX III
MACHINE RATINGS	
The following rating scale is used in PAMI Evaluation Reports:	
Excellent	Fair
Very Good	Poor
Good	Unsatisfactory

BRANDT 852 SUPER-CHARGER GRAIN AUGER

```
RETAIL PRICE
    $3225.00 (July 1991, f.o.b. Portage la Prairie, MB)
RATE OF WORK
    Capacity at 30
        - Dry Wheat (13% MC) 3590 bu/h (103 t/h)
        - Standard Material
QUALITY OF WORK
EASE OF OPERATION AND ADJUSTMENT
    Discharge Height
    Auger Reach
        - Bin Eave Clearance }\quad8.1\mathrm{ to }17.3\textrm{ft (2.5 to 5.3 m)
        - Reach
    Operation
    Manoeuvrability
    Transportability
    Adjustments
    Lubrication and Maintenance
POWER REQUIREMENTS
OPERATOR SAFETY
OPERATOR'S MANUAL
MECHANICAL HISTORY
```

3040 bu/h ($66 \mathrm{t} / \mathrm{h}$)
Good; less than 0.2% damage for each pass
12.3 to 33.3 ft (3.8 to 10.1 m)
8.1 to 17.3 ft (2.5 to 5.3 m)
15.3 to 24.0 ft (4.7 to 7.3 m)

Good; easy to manoeuvre
Very good; was easy to position
Very Good; stable at speeds of $20 \mathrm{mph}(35 \mathrm{~km} / \mathrm{h}$) on paved highways and 15 mph ($25 \mathrm{~km} / \mathrm{h}$) on gravel roads
Fair; Turning winch was tiring
Very Good
5.5 to 18.8 hp (4.1 to 14.1 kW)

Good; If appropriate precautions were observed
Very Good; Well written, organized and illustrated
Only one minor problem

3000 College Drive South Lethbridge, Alberta, Canada T1K 1L6 Telephone: (403) 329-1212
FAX: (403) 329-5562
http://www.agric.gov.ab.ca/navigation/engineering/ afmrc/index.html

Prairie Agricultural Machinery Institute
Head Office: P.O. Box 1900, Humboldt, Saskatchewan, Canada SOK 2A0
Telephone: (306) 682-2555
Test Stations:
P.O. Box $1060 \quad$ P.O. Box 1150

Portage la Prairie, Manitoba, Canada R1N 3C5 Humboldt, Saskatchewan, Canada SOK 2A0
Telephone: (204) 239-5445
Fax: (204) 239-7124

