Evaluation Report No. E0978 Printed: July, 1979 Tested at: Portage la Prairie ISSN 0383-3445

Evaluation Report

127

Thomas Model 660 Potato Harvester

THOMAS MODEL 660 POTATO WINDROWER

MANUFACTURER:

Thomas Equipment Limited Centreville, New Brunswick E0J 1H0

DISTRIBUTOR:

A.M. Briggs, Limited P.O. Box 273Portage la Prairie, Manitoba R1N 3B5

RETAIL PRICE:

\$13,772.00 (July, 1979, f.o.b. Portage la Prairie, Manitoba with standard contour bar spade, trash cutting coulters and vine lifter.)

FIGURE 1. Thomas 660 Potato Windrower: (1) Coulters, (2) Vine Lifter, (3) Deviner Chain, (4) Stripper Roller, (5) Primary Digger Chain, (6) Cross Conveyer Boom, (7) Secondary Digger Chain, (8) Coulter Lift Arm.

SUMMARY AND CONCLUSIONS

Functional performance of the Thomas 660 potato windrower was very good in loam and sandy soils with low to normal moisture contents. Performance was good in wet loam soils.

Work rate was governed by the separating ability of the primary and secondary digger chains and depended primarily on soil conditions. Appropriate ground speeds ranged from 2.5 km/h (1.5 mph) in moist, heavy soils to 5 km/h (3 mph) in dry, sandy soils. Average work rates ranged from 0.6 to 0.8 ha/h (1.5 to 2 ac/h) in average crop yields of 20 t/ha (9 ton/ac).

Deviner performance was very good and carry over losses were low in all crops.

Typical samples of windrowed potatoes showed 70% undamaged tubers, 15% slightly skinned, marketable tubers, 5% slightly bruised, unmarketable tubers and 10% severely damaged tubers. To reduce tuber damage, it was important to keep the digger chains well loaded with soil.

Plugging was infrequent in dry soil with relatively dry vines. In wetter soils, with tough green vines, the coulters often did not completely cut the vines, which led to hairpinning on the spade dividing boards and frequent shutdowns for cleaning.

The Thomas 660 was easy to maneuver, but on very short headlands, some backing was needed to align the windrower with the rows. The tractor mounted control console was convenient, permitting quick machine adjustments.

A tractor with a minimum 60 kW (80 hp) power take-off rating should have ample power to operate the Thomas 660 in most soil conditions.

The Thomas 660 was easy to service and lubricate and transported well. All drives were suitably shielded. The right tire was overloaded by 64%, while the left tire was overloaded by 36% at normal transport speeds. No operator's manual was provided. Several minor mechanical problems occurred during the 220 hour test period: The stripper roller support chains broke, the coulter activating arm buckled and one set of primary digger chains wore sufficiently to require replacement.

RECOMMENDATIONS

It is recommended that the manufacturer consider:

- Modifications to improve coulter cutting performance, in adverse conditions, thereby red ucing hairpinning of uncut vines on the spade dividing boards.
- 2. Modifications to eliminate buckling of the coulter activating arm.
- 3. Providing a suitable operator's manual.
- 4. Providing access holes in the drive shields to facilitate chain lubrication.

5. Equipping the windrower with tires with a higher load rating.

Chief Engineer -- E.O. Nyborg Senior Engineer -- J. C. Thauberger

Project Engineer -- G.R. Pool

THE MANUFACTURER STATES:

With regard to the recommendations: We will analyse your recommendations for possible implementation in future production.

GENERAL DESCRIPTION

The Thomas 660 (FIGURE 1) is a two-row, power take-off driven, pull-type potato windrower with a 1.6 m cutting width. It is designed to be used in conjunction with a potato harvester. The windrower is used immediately ahead of the potato harvester, digging two rows and placing them between the rows to be dug by the harvester. By windrowing in both directions, on each side of a set of rows, four rows may be placed between the rows to be dug by the potato harvester.

The windrower spade moves through the soil below two rows of potato tubers, lifting a mass of soil and vines onto the primary digger chains. A large portion of the soil falls through the primary chains, while the remaining soil, tubers and vines are delivered to the secondary digger chains. A larger pitch deviner chain, which rotates outside the secondary chains, carries vines and trash out the back of the windrower. The secondary chains complete soil separation and convey tubers to the rear cross delivery boom, which transfers them to the ground between two adjacent rows.

The windrower drive is controlled with the tractor power takeoff clutch, while hydraulic controls adjust spade depth and delivery boom height. A minimum 60 kW tractor, with 540 rpm power take-off and at least one hydraulic outlet, is needed to operate the Thomas 660.

The test machine was equipped with optional trash cutting coulters, optional vine lifter and a standard contour-bar spade.

Detailed specifications are given in APPENDIX I.

SCOPE OF TEST

The Thomas 660 was operated in the soil conditions shown in TABLE 1 for 220 hours while windrowing about 120 ha of Netted Gem potatoes. It was evaluated for ease of operation and adjustmerits, rate of work, quality of work, power requirements, operator safety and suitability of the operator's manual. Throughout the test, it was powered with an International Harvester Hydro 186 tractor and was used in conjunction with a Thomas 635 potato harvester. TABLE 1. Operating Conditions

RESULTS AND DISCUSSION EASE OF OPERATION AND ADJUSTMENTS

Hitching: Since the hitch weight was 420 kg, a jack was needed to hitch the Thomas 660 to a tractor. Alternately, the hitch could usually be raised sufficiently by first connecting the hydraulic hoses and lowering the spade onto the ground with the hydraulic system.

The Thomas 660 was powered by a standard 540 rpm power take-off shaft from the tractor. It was equipped with its own hydraulic control valve assembly (FIGURE 2) which connected to one set of outlets on the tractor hydraulic system. The valve assembly could be mounted either on an adjustable pedestal on the windrower hitch or at a convenient location on the tractor.

Hydraulic Controls: Since the control valve assembly could be mounted at the tractor operator station, access to hydraulic controls was convenient. The standard valve contained controls for spade depth and cross conveyor boom height. An additional valve could be added to the valve assembly for the optional hydraulic coulter depth control or the power steering.

Maneuverability: The model 660 was easy to maneuver on short headlands, but some backing was often needed to align the windrower with the rows. The optional power steering attachment, which was not evaluated, would be beneficial on short head lands.

Visibility: Monitoring of the tubers, dropping to the ground, was easy due to the good visibility of the cross conveyor from the tractor seat. Similarly, operator visibility of the spade, coulters, and primary

and secondary chains was excellent. A spade depth indicator on the front of the machine was well designed and easy to view.

FIGURE 2. Hydraulic Control Valve Assembly.

Night Operation: No lighting system was provided for night operation, however, standard tractor lighting was adequate. Plugging: Hairpinning of uncut vines on the spade dividing boards occurred in a variety of field conditions. Tough green vines, as well as bunches of dry vines, occasionally were not completely cut by the coulters. The uncut vines would then hairpin on the dividing boards, necessitating stops for cleaning.

Plugging was infrequent in dry soil with relatively dry vines. In wetter soil, with tough green vines, frequent cleaning stops were needed. In adverse conditions, coulter cutting effectiveness was improved by modifying the coulter assembly to increase downward coulter force. Field observation of the plugging pattern indicated that coulter effectiveness could also be increased by placing the coulters further ahead of the spade. It is recommended that the manufacturer modify the coulter assembly, possibly by providing heavier coulter springs and by positioning the coulters further forward, to improve vine cutting effectiveness in adverse conditions.

Vine Divider: The optional vine divider (FIGURE 3) is designed to reduce potato harvester carryover losses in crops with heavy green vines. The divider lifts vines ahead of the windrower delivery boom discharge, allowing tubers to be placed directly on the soil, between the two rows to be dug by the harvester.

Vine divider performance was very good. To disengage the divider the operator had to stop, dismount the tractor and hook the divider into the raised position by hand. This was not a problem, as the divider could be left in the lowered position when turning on headlands.

Transport: The Thomas 660 towed well at speeds up to 25 km/h, on smooth gravel and paved roads. Operator visibility to the rear was good. It was equipped with a slow moving vehicle sign for transport on public roads.

Lubrication: The Thomas 660 had 15 pressure grease fittings and five roller chains that required periodic lubrication. Daily lubrication took about 10 minutes. A lubrication schedule was not specified by the manufacturer. Several shields had to be removed to oil the five roller chains. Although all shields were well designed, removal was fairly difficult.

It is recommended that the manufacturer provide a lubrication schedule and consider providing access holes, in the shields, to facilitate lubrication.

RATE OF WORK

Work rates were governed by the separating ability of the primary and secondary digger chains and depended primarily on the soil type. Work rate was influenced by crop yield, to a lesser extent. Soil was conveyed into the windrow, along with the potatoes, if the windrower travelled too fast for the soil conditions. Appropriate ground speeds ranged from 2.5 km/h in moist, heavy soils to 5 km/h in dry, sandy soils. Average work rates varied from 0.6 to 0.8 ha/h,

in crops yielding an average of 20 t/ha. This corresponds to an average capacity of about 15 tonnes per hour.

FIGURE 3. Optional Vine Divider in Working Position.

QUALITY OF WORK

Soil Separation: The 40 mm pitch, primary and secondary digger chains were designed to separate the soil from the potato tubers. Soil separation was very good in all soil conditions, except in heavy wet soil, where the chain links became coated with soil. This reduced the gap between the links resulting in some soil carryover with the potatoes. This is a typical occurrence with most potato harvesters and windrowers.

Carryover: Deviner performance was very good in most field conditions and potato tuber carryover, with the vines, was insignificant. In fields with heavy, green vines, some carryover occurred, however the deviner stripper roller effectively reduced carryover to moderate levels in all crops, by stripping off most potatoes that clung to the vines.

Bruising: An average of 15% of the windrowed potatoes were sufficiently damaged to be unmarketable. The parameter used to determine damage was bruising, which included black spot as well as shatter bruise.¹ Typical samples of windrowed potatoes showed 70% undamaged tubers, 15% slightly skinned but marketable tubers, 5% slightly bruised tubers and 10% severely damaged tubers. The latter two categories were unmarketable.

To reduce tuber damaged to a minimum, it was important to keep the digger chains well loaded with soil and to operate the windrower at the maximum possible feedrate.

POWER REQUIREMENTS

Average power take-off input was about 7.5 kW while draft input varied from 10 to 25 kW, depending on soil conditions and ground speed. A tractor with a minimum 60 kW power take-off rating should have ample power reserve to operate the Thomas 660 in most conditions. In selecting a tractor, consideration should be given to the fact that the tractor must support a 420 kg hitch weight. In addition, tractor tire size should be adequate to provide sufficient floatation, in soft soil, to prevent tire damage to the undug tubers.

OPERATOR SAFETY

The Thomas 660 was equipped with adequate, well designed shields covering all exposed drives. A slow moving Vehicle sign was provided. If normal safety precautions were observed, all servicing and adjustments could be safely performed.

No safety instructions were provided with the Thomas 660. In addition, no safety decals were affixed to the machine to point out potential safety hazards.

The optional vine divider, when suspended in transport position (FIGURE 4) created a potential eye hazard during servicing especially if the suspension chain was not hooked at its shortest length. The operator should raise the divider as high as possible when placing it in transport, to reduce this potential hazard.

The tire loads on the Thomas 660 exceeded the maximum load rating for 7:50x20, 4 ply implement tires.² The right tire was overloaded by 64%, while the left tire was overloaded by 36% at normal transport speeds. It is recommended that the manufacturer equip the windrower with tires of higher load rating.

FIGURE 4. Potential Eye Hazard Caused by Vine Divider

OPERATOR'S MANUAL

No operator's manual was available for the Thomas 660. It is recommended that a suitable operator's manual be provided, complete with servicing, lubrication, operating and safety instructions.

DURABILITY RESULTS

TABLE 2 outlines the mechanical history of the Thomas 660 windrower during 220 hours of operation, while windrowing about 120 ha of potatoes. The intent of the test was evaluation of functional performance. The following failures represent those which occurred during functional testing. An extended durability evaluation was not conducted.

TABLE 2. Mechanical History

ITEM	HOURS	EQUIVALENT FIELD AREA ha
The coulter activating arm buckled during operation. It		
was straightened at	20	11
A brace to eliminate vibration in the cross delivery		
boom drive shaft was installed at	50	27
The devinor stripper roller support chains broke and		
were repaired at	80	44
The main gearbox input shaft seal began to leak at	175	95
The primary digger chains were worn out and replaced		
at	190	104

DISCUSSION OF MECHANICAL PROBLEMS

Stripper Roller: The stripper roller support chains broke, primarily due to improper support chain adjustment. The roller was positioned too close to the deviner chain causing the deviner chain links to strike the roller, and accelerating support chain wear. No further problems occurred once the roller was raised to eliminate this interference.

Coulter Activating Arm: The coulter activating arm lowered the coulters into cutting position, when the spade was lowered. The activating arm had inadequate strength, and buckled during field operation. No further problems occurred after the arm was reinforced. (FIGURE 5.)

Cross Delivery Boom Drive Shaft: The drive shaft at the discharge end of the rear cross delivery boom was subjected to vibration during operation. To prevent failure, a brace was installed between the free end of the drive shaft and the main frame.

FIGURE 5. Coulter Activating Arm.

APPENDIX I				
	SPECIFICATIONS			
Make:	Thomas			
Model:	660			
Serial Number:	1079			
Coulters:				
type	notched blade			
diameter	510 mm			
depth control	integral with spade depth control			
Digger Spade:				
type	standard contour			
width	1630 mm			
depth control	hydraulic ram			
Primary Digger Chains:				
type	dual offset chain			
number of links	115			
length	4600 mm			
bar size	11 1 mm			
pitch	40 mm			
Secondary Digger Chains:				
type	dual rubber covered chain			
number of links	88			
length	3520 mm			
har size	11 1 mm			
bai size	40 mm			
number of flights	11, rubber			
Deviner Chain:				
type	single rubber covered chain			
number of links	56			
type number of links	single rubber covered chain 56			

-- number of I -- length

- -- bar size
- -- pitch

single rubbe 56 7170 mm 15.9 mm 128 mm

Delivery Boom Conveyor Chain:				
type	single, rubber covered chain			
number of links	140			
length	5600 mm			
bar size	11.1 mm			
pitch	40 mm			
Stripper Roller:				
length	1400 mm			
diameter	255 mm			
Number of Chain Drives:	5			
Number of Gear Boxes:	2			
Number of Sealed Bearings:	11			
Number of Pressure Grease Fittings:	: 15			
Clutches:				
slip clutches	2			
torque limiters	2			
Tires:	2, 7.50x20SL, 4 ply			
Overall Dimensions:				
wheel tread	1930 mm			
length	7470 mm			
width	3680 mm			
height	2030 mm			
ground clearance	250 mm			
turning radius	18,000 mm			
Weight: (unloaded)				
right wheel	1292 kg			
left wheel	1068 kg			
hitch	420 kg			
TOTAL	2780 kg			
Optional Equipment: chamfered spad unit, hydraulic coulters, kickers, power	le units, three-point spade unit, roller bar spade steering.			
MACHINE RATINGS				
a) excellent	IN PAIVIL EVALUATION REPORTS:			
a) excellent	u) iali			

b) very good c) good		e) poor f) unsatisfactory
		1

APPENDIX III METRIC UNITS

In keeping with the Canadian metric conversion program this report has been prepared in SI Units. For comparative purposes, the foliowing conversions may be used. 1 hectare (ha) = 2.47 acres (ac) 1 kilometre/hour (km/h) = 0.62 miles/hour (mph) = 2.20 pounds mass (lb) = 2204.6 pounds mass (lb) 1 kilogram (kg) 1 tonne (t) 1 tonne/hour (t/h) = 1.10 ton/hour (ton/h) 1 tonne/hectare (t/ha) 1000 millimetres(mm) = 1 metre (m) = 0.45 ton/acre (ton/ac) = 39.37inches (in) 1 kilowatt (kW) = 1.34 horsepower (hp)

ALBERTA FARM MACHINERY RESEARCH CENTRE

3000 College Drive South Lethbridge, Alberta, Canada T1K 1L6 Telephone: (403) 329-1212 FAX: (403) 329-5562 http://www.agric.gov.ab.ca/navigation/engineering/ afmrc/index.html

Prairie Agricultural Machinery Institute

Head Office: P.O. Box 1900, Humboldt, Saskatchewan, Canada S0K 2A0 Telephone: (306) 682-2555

Test Stations: P.O. Box 1060 Portage la Prairie, Manitoba, Canada R1N 3C5 Telephone: (204) 239-5445 Fax: (204) 239-7124

P.O. Box 1150 Humboldt, Saskatchewan, Canada SOK 2A0 Telephone: (306) 682-5033 Fax: (306) 682-5080

This report is published under the authority of the minister of Agriculture for the Provinces of Alberta, Saskatchewan and Manitoba and may not be reproduced in whole or in part without the prior approval of the Alberta Farm Machinery Research Centre or The Prairie Agricultural Machinery Institute.